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Foreword

This report was developed and published with the technical help and financial
support of the members of the PPI (Plastics Pipe Institute). The members have
shown their interest in quality products by assisting independent standards-
making and user organizations in the development of standards, and also by
developing reports on an industry-wide basis to help engineers, code officials,
specifying groups, and users.

The purpose of this technical report is to provide important information available
to PPI on the design life of corrugated HDPE pipe.

This report has been prepared by PPl as a service of the industry. The
information in this report is offered in good faith and believed to be accurate at
the time of its preparation, but is offered without any warranty, expressed or
implied, including WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE. Any reference to or testing of a particular
proprietary product should not be construed as an endorsement by PPI, which
does not endorse the proprietary products or processes of any manufacturer.
The information in this report is offered for consideration by industry members in
fulfilling their own compliance responsibilities. PPl assumes no responsibility for
compliance with applicable laws and regulations.

PPI intends to revise this report from time to time, in response to comments and
suggestions from users of the report. Please send suggestions of improvements
to the address below. Information on other publications can be obtained by
contacting PPI directly or visiting the web site.
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Design Service Life Of Corrugated HDPE Pipe

Introduction:

Thermoplastic pipes began to be used over 50 years ago in Europe and North
America for water and sewer applications. Polyethylene pipe has been used for
drainage applications in the United States for over 35 years and for highway
pavement underdrain applications for 30 years. These pipe were generally
150mm (6 inch) in diameter and smaller. As use and applications for these
materials expanded and as diameters increased questions concerning design
service life and materials properties became significant issues. Designing with
thermoplastic materials requires an understanding of viscoelastic or viscoplastic
materials. The mechanical strength of these materials has to be put in relation to
the forces acting on it, the stress, the loading time, and the temperature. The
properties of primary concern are tensile yield strength and flexural modulus
(because those are used in the design code); which are directly related to and
proportional to density and, to a lesser extent, molecular weight. The values that
truly govern how well, and for how long, the pipe performs are compression
strength and flexural modulus; because the compression strength determines the
pipe hoop compression stiffness and the flexural modulus determines the pipe or
ring stiffness.

Any discussion of buried pipe service life can not ignore installation quality and
practice. All buried structures, regardless of material, are structures of the soil
and the pipe or structure, interacting with each other to carry the required loads.
Poor installation practice will lead to poor performance of the soil-structure
interaction system. AASHTO provides conservative installation guidance in
Section 30 of the “AASHTO Standard Specifications for Highway Bridges.”
Similar installation requirements are provided in ASTM D 2321, “Standard
Practice for Underground Installation of Thermoplastic Pipe for Sewers and Other
Gravity-Flow Applications.” Proper installation practice can contribute greatly to
long-term system performance.

Current Specifications:

The current AASHTO (American Association of State Highway and
Transportation Officials) specifications covering corrugated polyethylene pipe
include Standard Specification for Corrugated Polyethylene Pipe, 300- to 1200-
mm Diameter, AASHTO Designation: M 294-02 and AASHTO LRFD Bridge
Design Specifications, Section 12 — Buried Structures and Tunnel Liners.
AASHTO M 294 requires that the pipe be manufactured from materials (resins)
as defined in paragraph 6.1.1:



“Extruded Pipe and Blow Molded Fittings — Pipe and fittings shall be made of
virgin PE that conform with the requirements of cell class 335400C as defined
and described in ASTM D 3350, except that the carbon black content shall not
exceed five percent, and the density shall be not less than 0.945 gm/cc nor
greater than 0.955 gm/cc. Resins that have higher cell classifications in one or
more properties, with the exception of density, are acceptable provided product
requirements are met. For slow crack growth resistance, acceptance of resins
shall be determined by using the single point notched constant tensile load (SP-
NCTL) test according to the procedure described in Section 9.5. The average
failure time of the five specimens must exceed 24 hours with no single test
specimen’s failure time less than 17 hours.” From this resin description, Section
12 of the AASHTO LRFD Bridge Design Specifications sets material properties
for design in Table 12.12.3.3-1 as follows:

Type of Pipe Minimum | Allowable | Initial | Initial | 50-Year 50-
Cell Long-Term Fu E min | Fymin Year
Class Strain % min | (MPa) | (MPa) | E min
ASTM D (MPa) (MPa)

3350
Corrugated PE
Pipe — AASHTO M | 335400C 5 20.7 758 6.21 152
294

These values represent the minimums for the cell classification from ASTM D
3350 and do not represent what the industry is actually using. They also
represent initial material properties values based on a specific loading regime
that may or may not be representative of actual loading conditions. The initial
flexural modulus value is based on tests conducted in accordance with ASTM D
790, Method 1, Procedure B, loading a 50mm specimen, 3.2mm thick and
12.7mm wide at a crosshead speed of 12.7mm/minute with the average value of
the secant modulus calculated at 2% strain in the outer fibers. The initial tensile
strength at yield is determined in accordance with ASTM D 638 using a
“dogbone” specimen 1.9mm thick loaded at a rate of 50 mm/minute. The 50-year
values for tensile strength and flexural modulus were selected based on resins
used in the 1980s with some additional safety factors, and do not apply to resins
currently required and used by the industry. The use of a “50-year” value is an
arbitrary carry-over from the gas pressure pipe industry, where results from HDB
testing, conducted for 10,000 hours (1.14 years), are projected forward to 50
years, with a safety factor. If 10,000 hours is projected forward two orders of
magnitude, to 1,000,000 hours, that would equate to 114 years.




Current Materials (initial properties):

Resins currently utilized by the corrugated PE pipe industry exceed a minimum
density of 0.948 gm/cc and have a melt index of less than 0.4 gm/10 minutes.
These resins have a minimum initial tensile yield strength of 22.75 MPa (3,300
psi) and a minimum initial flexural modulus of 900 MPa (130,500 psi), as tested
in accordance with ASTM D 3350. As density increases, these values both
increase, linearly. (See Figures 1 and 2) (1)
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Figure 1. Tensile vs. Density
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Figure 2. Flexural Modulus vs. Density

Long-Term Properties:
1. Tensile Strength:

Tests (a stress regression test) of a specific resin used by the corrugated PE
pipe industry in the early 1980s, a 0.952 gm/cc density material with a 0.4 gm/10
min melt index, demonstrated a 100,000 hour hoop tension strength of 9.24 MPa
(1,340 psi) and a 50-year value of 8.5 MPa (1,233 psi). If the test curve is
projected to 1,000,000 hours, the design tensile strength value would be 7.5 MPa
(1,080 psi). (2)

2. Modulus of Elasticity:

Dr. Lars-Eric Janson has published several articles plus a textbook in which he
presents his work in developing a long term modulus of elasticity, or a relaxation
modulus. In his tests, one pipe is deflected to 5% vertical deflection between
parallel plates and held, in some cases for 9 years, and the stiffness regression
recorded, which directly relates to the relaxation of the modulus of elasticity. In
another series of tests, pipe was deflected to 4.3% and 13.6% and held for 8
years, with the same regression being recorded on a log scale. The regression
curves can be project to 100 years, which is slightly over one order of magnitude
from the period tested. Further, Dr. Janson found that tests conducted for as little
as 100 hours were sufficient to make safe extrapolations up to 50 years or more
for PE pipe. (3, 4)



Similar tests were conducted by Dr. Lester Gabriel at California State University

on 24 pipe samples utilizing both the parallel plate test with samples deflected
5% and held, and the curved beam test, developed by Dr. Gabriel and Jim
Goddard, with pipe wall samples subjected to 5% chord shortening. Pipe
samples included 7 different diameters and represented 4 different
manufacturers. From those tests, the relaxation curves were developed and

extrapolated to 100 years. The curves were consistent in shape and slope, and
the reduction in modulus from 50 to 100 years was a consistent 3% for both test

methods. (5, 6)

Based on this testing, it should be appropriate to change the properties table in

AASHTO Section 12 as follows:

Type of | Minimum | Allowable | Initial | Initial 50- 50- 100- 100-
Pipe Cell Long- Fumin | Emin | Year | Year | Year | Year
Class Term (MPa) | (MPa) | Fymin | E min Fu E min
ASTM D | Strain % (MPa) | (MPa) | min | (MPa)
3350 (MPa)
Corrugated
PE Pipe — | 335400C 5 22.75 | 900 8.5 179 7.5 174
AASHTO
M 294

A corresponding change should be made to the AASHTO M 294 specification,

increasing the minimum resin density to 0.948 gms/cc from the current 0.945

gms/cc.

These “long-term” values, at 50 and 100 years, are meaningful in design only if
the stress is kept constant and there is no restraint on deformation. As stated by
Dr. Janson in discussing the solil-structure interaction, “during the first years, the
soil undergoes the reconditioning and settling that the backfilling technique has

not succeeded in achieving, but which nature, with the help of traffic loading,
groundwater movement, soil creep, soil frost action, etc. finally takes care of.”
“During this time the pipe impulsively fights against additional deflection by virtue

of its short-term ring stiffness.” “When the surrounding filling has found its shape

and this shape fits the pipe’s deflected shape, no further change in the pipe

shape of any practical importance takes place.” Therefore, it is really the initial

values that should have more impact on design of gravity flow pipe. (3) Two other

papers of interest in this area include another by Dr. Janson titled “Short-Term

Versus Long-Term Pipe Ring Stiffness in the Design of Buried Plastic Pipes,” (7)
and one by Elzink and Molin titled “The Actual Performance of Buried Plastic

Pipes in Europe Over 25 Years.” (8) In the paper by Elzink and Molin, they state

that deflection becomes stable in a relatively short period of time and then

remains constant. Janson states; “deflection will reach a constant value within a




period of 2 — 3 years.” He also states that, “in traffic areas this period is found to
be shorter. Thus, stresses beyond this point tend to regress, while soil remains
stable around the pipe. This would not apply to pipe installed in soils or
conditions that do not consolidate or stabilize, but those soils should not be
placed around buried pipes of any type and are not permitted in the AASHTO
construction standards.

Further, using the AASHTO design procedure, as contained in Section 12 of the
“AASHTO LRFD Bridge Design Specification,” as well as reviewing the research
on buried thermoplastic pipe, the pipe is found to be under hoop compression,
with tension being limited and at a fraction of allowable levels. Thus, the point in
time at which any tensile failure might occur is very far distant. In compression,
Slow Crack Growth does not occur.

Even with those “initial” values, the “instantaneous” modulus and tensile yield are
considerably under-estimated. For live loads, such as a truck crossing over a
buried pipe at 95 KPH (60 MPH), the effect on the buried pipe takes less than a
second. Another way to look at these time effects is to return to the relaxation
modulus curves developed by Dr. Gabriel and Jim Goddard. For a standard pipe
stiffness test per ASTM D 2412, run at 12.7mm per minute (0.5 inches per
minute), the test on 1500mm (60”) pipe takes 6 minutes. In relation to the
“instantaneous” modulus from the tests and the 100-year value, in 6 minutes
approximately 40% of the relaxation has occurred. That is consistent for all of the

HDPE curves. (5)
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Figure 3 — Relaxation Modulus Curve — from Dr. Lester Gabriel



Another report that is helpful when considering the implications of a deeply
buried pipe over a long period of time is the “Pennsylvania Deep Burial Study 15
Year Summary Report” prepared by James B. Goddard and submitted to the
Pennsylvania Department of Transportation in August of 2002. This report covers
the inspection of a 600mm (24 inch) diameter corrugated polyethylene pipe
installed in 1987 under Interstate 279 north of Pittsburgh, Pennsylvania. This
pipe has 30.5 meters of fill (100 feet) over it. Based on inspections completed in
the summer of 2002, there has been no significant change to this pipe in the last
7 years. The only documented problem with this installation is some cracking in
the Type C pipe under the couplings under 21 meters (70 feet) or more of fill,
which have not spread to or appeared in the pipe wall outside the couplings. If
the relaxation curves developed from the work by Les Gabriel and Jim Goddard
are used to predict a potential spread of that cracking to couplings under lesser
fill heights, and 70 feet of soil pressure for 15 years is used as the base, then
cracking should appear under couplings with 64 feet of fill at 100 years. This
makes some interesting and conservative assumptions, primarily that the
pressure on the pipe remains constant for that period of time, where it is more
likely that the pressure will decrease substantially, and probably has already
since no change in the cracking could be identified over the last 7 years. Pipe
shape and/or deflection has not changed in the last 10 years. A full summary
report of this work has been delivered to PennDOT for their review and
comments along with a complete set of referenced reports totally over 1,000
pages of data. (9)

Another report that adds support to the very long design service life of corrugated
polyethylene pipe is “Clogging of Perforations in Plastic Drain Pipe” by by Glen
Sanders and John Ellis of the U. S. Department of the Interior, Bureau of
Reclamation. As the title indicates, the principle point of this study was to
determine the extent of clogging of pipe perforations by backfill envelope
materials. The report states that, after 29 years of service, “None of the pipe
samples were extensively clogged by the envelope material.” The report goes on
to state that “All but one of the perforated pipe samples passed strength and
impact tests currently required of new pipe used in Reclamation construction of
subsurface drains.” Also; “It should be noted that some of the pipe samples were
produced before the earliest flexible plastic pipe standards were developed in the
mid-70s by American Association of State Highway and Transportation Officials
(AASHTO), American Society for Testing and Materials (ASTM), and USBR.”
None of this pipe was buckled or cracked. (10)

Chemical resistance and abrasion resistance are also design service life issues.
Both are covered well in a Corrugated Polyethylene Pipe Association document
entitled “Chemical & Abrasion Resistance of Corrugated Polyethylene Pipe.” This
includes a summary of abrasion testing conducted at California State University —
Sacramento by Dr. Lester Gabriel as well as field performance data from a 1981
Ohio Department of Transportation crossdrain installation. (11) The tests at
California State University — Sacramento utilized a tilting table, a bedload of



crushed quartz, control pH levels of 4 and 7, and corrugated PE pipe, corrugated
steel pipe, and reinforced concrete pipe. In one test, with concrete pipe and

corrugated PE pipe placed side-by-side on the tilting table, the test was run to

first perforation. The thick-walled concrete pipe perforated in about 10 days,

while the corrugated polyethylene pipe had a slightly roughened invert, but no
perforations. The 1981 Ohio DOT installation carries a substantial bedload of
crushed sandstone from an abandoned strip mine. The flow also has had a pH of

less than 4. The invert of this pipe is still in excellent condition.

Summary & Conclusions:

1. There is considerable supporting justification for assuming a 100-year or

greater design service life for corrugated polyethylene pipe, when properly

used and reasonably well installed. Dr. Janson’s work (6) is excellent in

presenting the support for this position.

2. Minimum material design values for tensile strength and modulus of
elasticity are:

Type of | Minimum | Allowable | Initial | Initial 50- 50- 100- 100-
Pipe Cell Long- Fumin | Emin | Year | Year | Year | Year
Class Term (MPa) | (MPa) | Fy min | E min Fu E min
ASTM D | Strain % (MPa) | (MPa) | min | (MPa)
3350 (MPa)
Corrugated
PE Pipe — | 335400C 5 22.75 | 900 8.5 179 7.5 174
AASHTO
M 294

3. The AASHTO Subcommittee on Materials should increase the minimum
density to 0.948 gms/cc from the current 0.945 gms/cc.
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